Separation Axioms

From hyperspacewiki
Revision as of 04:58, 1 December 2018 by Jflopezfernandez (talk | contribs) (Added content)
Jump to: navigation, search

The Axioms of Separation are additional conditions to specialize the notion of a topological space. Arbitrary topological spaces are too general an object for many problems of analysis and it is therefore useful to impose extra conditions on a topological space.[1]


Axiom Associated Space Description
$T_0$ Kolmogorov Space
$T_1$ Fréchet Space For each pair of distinct points $x$ and $y$, their respective neighborhoods $O_x$ and $O_y$ contain one another, i.e. $x \in O_y$ and $y \in O_x$.
$T_2$ Hausdorff Space Every pair of disjoint points in a Hausdorff space has a pair of disjoint neighborhoods.

Further Reading

See Also


  1. Kolmogorov, A. N., and S. V. Fomin. Introductory Real Analysis. Rev. English ed. New York: Dover Publications, 1975. pg. 78-79.