# Difference between revisions of "Hyperspace"

(Added references and tweaked the structure) |
|||

Line 1: | Line 1: | ||

− | Let $(X,\tau)$ be a [[topological space]]. A ''hyperspace'' of $(X,\tau)$ is the topological space $(\mathcal{H},\tau_v)$ where $\mathcal{H} \subset \mathcal{P}(X)$ is a collection of subsets of $X$ and $\tau_v$ is the [[Vietoris topology]]. Typically we only take closed sets to be in $\mathcal{H}$ and do not allow the [[empty set]] $\emptyset$ to be in $\mathcal{H}$.<ref>Illanes, Alejandro, and Sam B. Nadler. Hyperspaces: Fundamentals and Recent Advances. Monographs and Textbooks in Pure and Applied Mathematics 216. New York: M. Dekker, 1999.</ref> | + | Let $(X,\tau)$ be a [[topological space]]. A ''hyperspace'' of $(X,\tau)$ is the topological space $(\mathcal{H},\tau_v)$ where $\mathcal{H} \subset \mathcal{P}(X)$ is a collection of subsets of $X$ and $\tau_v$ is the [[Vietoris topology]]. Typically we only take closed sets to be in $\mathcal{H}$ and do not allow the [[Empty Set|empty set]] $\emptyset$ to be in $\mathcal{H}$.<ref>Illanes, Alejandro, and Sam B. Nadler. Hyperspaces: Fundamentals and Recent Advances. Monographs and Textbooks in Pure and Applied Mathematics 216. New York: M. Dekker, 1999.</ref> |

==Properties of hyperspaces== | ==Properties of hyperspaces== | ||

− | * If $(X,\tau)$ is [[homeomorphism | homeomorphic]] to $(Y,\sigma)$, then $\mathrm{CL}(X)$ is | + | * If $(X,\tau)$ is [[homeomorphism | homeomorphic]] to $(Y,\sigma)$, then $\mathrm{CL}(X)$ is homeomorphic to $\mathrm{CL}(Y)$. |

==Common hyperspaces== | ==Common hyperspaces== |

## Latest revision as of 05:25, 1 December 2018

Let $(X,\tau)$ be a topological space. A *hyperspace* of $(X,\tau)$ is the topological space $(\mathcal{H},\tau_v)$ where $\mathcal{H} \subset \mathcal{P}(X)$ is a collection of subsets of $X$ and $\tau_v$ is the Vietoris topology. Typically we only take closed sets to be in $\mathcal{H}$ and do not allow the empty set $\emptyset$ to be in $\mathcal{H}$.^{[1]}

## Properties of hyperspaces

- If $(X,\tau)$ is homeomorphic to $(Y,\sigma)$, then $\mathrm{CL}(X)$ is homeomorphic to $\mathrm{CL}(Y)$.

## Common hyperspaces

We interpret the topologies on these spaces to be the induced subspace topology from $\tau_v$.

- The hyperspace of closed subsets: $\mathrm{CL}(X) = \{ A \subset X \colon A$ is nonempty and closed in $X \}$
- The hyperspace of closed connected subsets: $\mathrm{CLC}(X) = \{A \in \mathrm{CL}(X) \colon A$ is connected $\}$
- The hyperspace of compact subsets: $2^X = \{A \in \mathrm{CL}(X) \colon A$ is compact $\}$
- The hyperspace of continua: $\mathrm{C}(X)=2^X \bigcap \mathrm{CLC}(X)$
- If $X$ is a $T_1$ space then the
*$n$-fold symmetric product of $X$*is the hyperspace $F_n(X)=\{A \subset X \colon 1 \leq |A| \leq n\}$ where $|A|$ denotes the cardinality of $A$. The space $F_1$ is called the*space of singletons*. - The
*hyperspace of finite subsets of $X$*is $F(X) = \displaystyle\bigcup_{n=1}^{\infty} F_n(X)$ - Let $X$ be a compactum with metric $d$. For any $\epsilon \geq 0$, let

$$C_{d,\epsilon}(X)=\{A\in C(X)\colon \mathrm{diam}_d(A)\leq \epsilon \},$$ where $\mathrm{diam}_d(A)=\mathrm{sup}\{d(x,y)\colon x,y\in A\}$. The hyperspaces $C_{d,\epsilon}(X)$ are called *small-point hyperspaces*.

## References

- ↑ Illanes, Alejandro, and Sam B. Nadler. Hyperspaces: Fundamentals and Recent Advances. Monographs and Textbooks in Pure and Applied Mathematics 216. New York: M. Dekker, 1999.