# Difference between revisions of "Connected im kleinen"

Line 1: | Line 1: | ||

− | Let $(X,\tau)$ be a [[topological space]] and let $x \in X$. We define $X$ to be connected im kleinen at $x$ if for each closed $C \subset X \setminus \{x\}$ there is a continuum $K \subset X$ such that $x \in \mathrm{Int}(K) \subset K \subset X \setminus C$. | + | Let $(X,\tau)$ be a [[topological space]] and let $x \in X$. We define $X$ to be connected im kleinen at $x$ if for each closed $C \subset X \setminus \{x\}$ there is a continuum $K \subset X$ such that $x \in \mathrm{Int}(K) \subset K \subset X \setminus C$, where $\mathrm{Int}(K)$ denotes the [[interior]] of $K$. |

=Properties= | =Properties= |

## Latest revision as of 02:11, 24 December 2018

Let $(X,\tau)$ be a topological space and let $x \in X$. We define $X$ to be connected im kleinen at $x$ if for each closed $C \subset X \setminus \{x\}$ there is a continuum $K \subset X$ such that $x \in \mathrm{Int}(K) \subset K \subset X \setminus C$, where $\mathrm{Int}(K)$ denotes the interior of $K$.