Difference between revisions of "Connected im kleinen"

From hyperspacewiki
Jump to: navigation, search
 
Line 1: Line 1:
Let $(X,\tau)$ be a [[topological space]] and let $x \in X$. We define $X$ to be connected im kleinen at $x$ if for each closed $C \subset X \setminus \{x\}$ there is a continuum $K \subset X$ such that $x \in \mathrm{Int}(K) \subset K \subset X \setminus C$.
+
Let $(X,\tau)$ be a [[topological space]] and let $x \in X$. We define $X$ to be connected im kleinen at $x$ if for each closed $C \subset X \setminus \{x\}$ there is a continuum $K \subset X$ such that $x \in \mathrm{Int}(K) \subset K \subset X \setminus C$, where $\mathrm{Int}(K)$ denotes the [[interior]] of $K$.
  
 
=Properties=
 
=Properties=

Latest revision as of 02:11, 24 December 2018

Let $(X,\tau)$ be a topological space and let $x \in X$. We define $X$ to be connected im kleinen at $x$ if for each closed $C \subset X \setminus \{x\}$ there is a continuum $K \subset X$ such that $x \in \mathrm{Int}(K) \subset K \subset X \setminus C$, where $\mathrm{Int}(K)$ denotes the interior of $K$.

Properties

Locally connected if and only if connected im kleinen