Cone over circle with spiral homeomorphic to hyperspace of continua of circle with spiral
Theorem
Let $X$ be the circle with a spiral, then $C(X)$ is homeomorphic to $\mathrm{Cone}(X)$, where $C(X)$ denotes the hyperspace of continua of $X$.
Let $X$ be the circle with a spiral, then $C(X)$ is homeomorphic to $\mathrm{Cone}(X)$, where $C(X)$ denotes the hyperspace of continua of $X$.