Compact

From hyperspacewiki
(Redirected from Compact Set)
Jump to: navigation, search

Let $(X,\tau)$ be a topological space. We say that $(X,\tau)$ is compact if given any open cover $\mathcal{O}$ of $(X,\tau)$, then there is a finite subcover $\{\mathcal{O}_1,\ldots,\mathcal{O}_n\}$.

Properties